

Routes of Transmission

Potential for Transmission (Airborne)

Modes of Transmission	Definitions – applied aerosol transmission
Obligate	obligate: under natural conditions diseases occur following transmission of the agent only through inhalation of microscopic particle aerosols (e.g., tuberculosis)
Preferential	preferential: the natural infection results from transmission through multiple routes, but small particle aerosols are the predominant route (e.g., measles)
Opportunistic	opportunistic: agents that cause disease, under special circumstances may be transmitted via fine particle aerosols.

- This conceptual framework can explain rare occurrences of airborne transmission of agents that are transmitted most frequently by other routes (e.g., smallpox, influenza). https://www.cdc.gov/infectioncontrol/guidelines
- In these cases, the exceptions do not prove the rule.

Airborne Transmission Mechanics

"Airborne" naturally means "carried by air"

Factors which affect this are:

- Indoor Environmental Conditions
 - Temperature
 - Humidity
 - Air Velocity vectors
- Nature of droplets (size and content)
- Type of organism
 - Resilience
 - Inoculation dose (particles/ CFU)
- Source strength
 - Aerosol generating procedures
 - Singing
 - Gyms high respiration rates
 - Contaminant removal rates ventilation, air cleaners

Is COVID-19 "Airborne"

- COVID-19 is probably no more airborne than SARS¹
- SARS (CoV-1) is not thought to be predominantly "airborne"
- Transmission by the air is not the same as transmission though the air
- Droplet transmission can be ballistic
- Ballistic transmission range can be extended by air jets or in toroidal vortices (like smoke rings)
- Long-range airborne transmission requires the disease to propagate with low infectious quanta or high viral shedding (TB vs SARS-CoV-2)
- Strong negative signal from Diamond Princess outbreak (2020) which demonstrated no transmission though recirculating ventilation systems ²
- COVID-19 "Airborne" transmission similar to opportunistic long-range droplet transmission

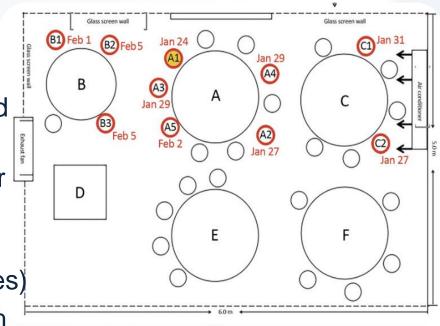
[2] ASHRAE 2021

HVAC: To Ventilate or Not?

- Use/modify HVAC during COVID (ASHRAE, WHO, CDC)
- Don't use AC during COVID (various)

- Confusing definition of "HVAC"
- Weak/conflicting evidence for airborne transmission

- Testing
- Maintenance and Cleaning
- Supplementary Systems


TERMINOLOGY MATTERS

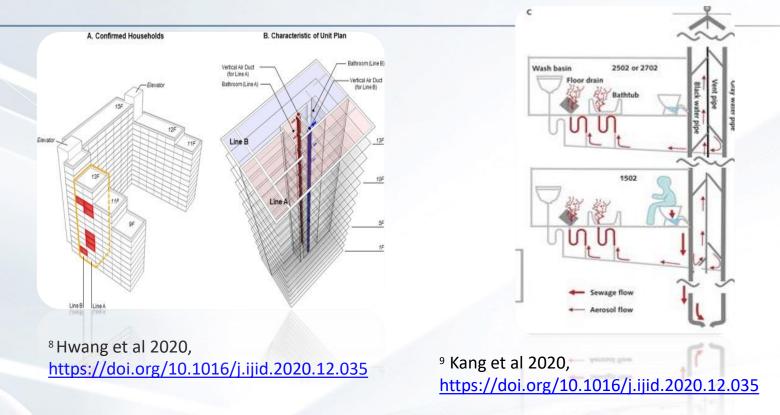
- HVAC:- Heating, Ventilation and Airconditioning
- Ventilation:- the process where "fresh" air is introduced or removed from a space to reduce indoor contaminant levels
- Airconditioning:- the mechanical process of cooling (or heating)
 the air to improve comfort levels in a space
- Droplet transmission:- short range person to person/fomite through droplets too heavy to remain suspended in air indefinitely
- Airborne transmission:- long range person to person respiratory transmission though the air (responds to ventilation interventions)
- ASHRAE:- American Society of Refrigeration and Air-conditioning Engineers
- REHVA:- Federation of European HVAC Associations

- Guangzhou restaurant outbreak 2020¹
 - Restaurant was poorly ventilated but had a high wall split unit.
 - Samples from the air conditioner | were all nucleotide negative
 - Transmission was likely longrange droplet (1m between tables)
 - Asymptomatic transmission from source family a possibility
 - Exposure time correlated with transmission

South Korea Call Centre Outbreak 2020²

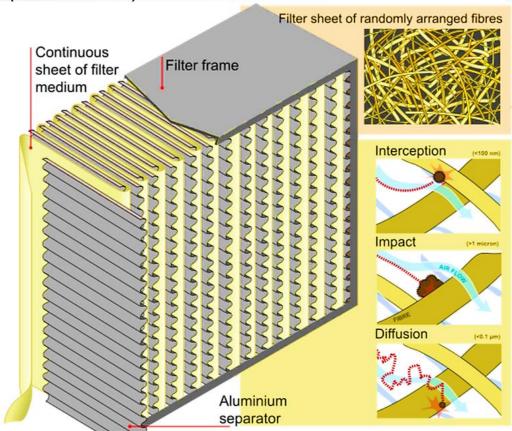
- 11th floor office was poorly ventilated (limited data)
- COVID-19 "is exceptionally contagious in crowded office settings"
- Outbreak follows physical compartmentalisation more than HVAC zones
- Lobbies and lifts resulted in limited spread
- Exposure time correlated with transmission

² https://wwwnc.cdc.gov/eid/article/26/8/20-1274 article



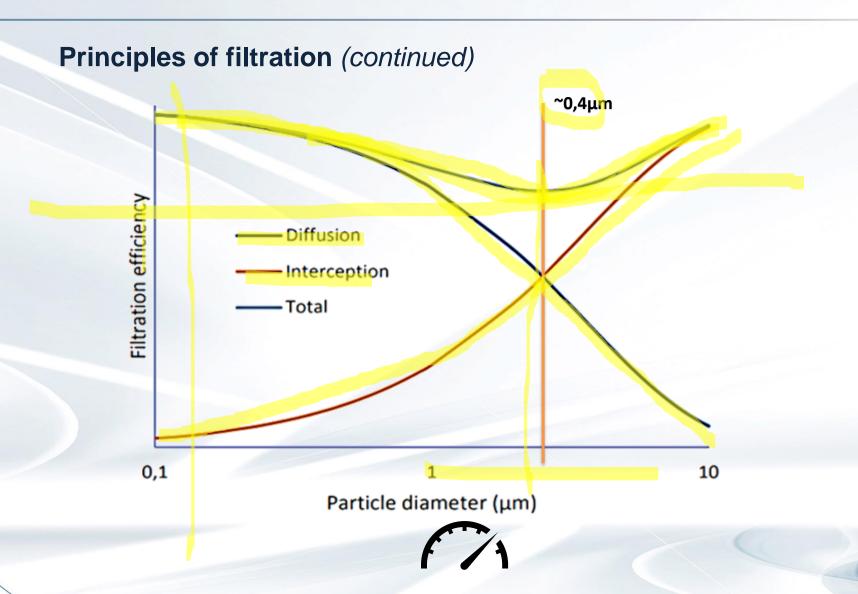
- Aerosol and Surface Stability of SARS-CoV-2 6
 - van Doremalen report on airborne stability of SARS-CoV-2 states 3h stability in air⁶
 - van Doremalen uses <u>Goldberg Drum</u> to determine stability in air
 - Separate Ebola study used similar drum stability to argue that a new Ebola strain was not airborne⁷
 - van Doremalen report should be understood only as comparison between SARS-CoV-1 & 2

⁷ Robert (2016) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5050463


- Reported airborne transmission are fecal aerosol transmission events (& system failures)
- Transmission events though ventilation ducting are not reported

COVID-19: Filtration

Principles of filtration (continued)



(Camfil Farr)

COVID-19: Filtration

COVID-19: Filtration

- HEPA (high efficiency) filtration not generally necessary
 - High filter pressure drops may stall ventilation or drastically reduce airflow
- ASHRAE recommends no more than SANS1464 M6 (ePM2.5-50%) filters for recirculation
 - WHO recommends F8 (ePM2.5-80%)
- Exhaust air can be safely discharged without HEPA filtration or UVGI decontamination

Should I still use my HVAC system?

- If it improves ventilation rates YES!
 - Increase ventilation to more than double the regulatory ⁵ minimum per-person ventilation rates if possible
 - (or reduce people)
- More <u>outdoor air</u> is better
 - Open windows wherever possible and safe
- Circulating Fans improve ventilation effectiveness
 - Prevent stagnant air
 - Don't let AC units/fans blow directly down across groups of people (limit horizontal airflow)

Should I still use my HVAC system?

- Consider CO₂ monitoring (Fresh Air Demand Control)
 - REHVA COVID-19 Guide recommends CO₂ set-point **550 PPM** ⁸
 - This equates to 40 L/s per person
 - CSIR recommends < 200 PPM above outdoor for TB
 - This equates to 32 L/s per person
 - COVID control by RH and temperature is not feasible (56°C @ >60%RH) 8
 - Flush buildings for 2h before and after daily occupation (exhausts should run 24/7)
 - Reduce recirculation to ALARA for low risk buildings
 - No recirculation for high risk healthcare spaces (as usual)

COVID-19: Engineers vs Doctors

WHO Position	US-CDC	ASHRAE and REHVA
 Primarily Small Droplet spread 	 Mainly Respiratory Droplet spread 	 "Sufficiently" likely airborne
Close contact < 1mDroplet precautions	Close contact <6ftDroplet precautions	 Engineering controls to reduce exposure
 Limited airborne risk 	 Limited airborne risk 	 Dilution ventilation

- WHO and CDC prioritize standard precautions and distancing over increased ventilation and filtration levels
- ASHRAE & REHVA strongly recommend additional dilution ventilation and filtration with minimum recirculation
- Emerging ASHRAE guidance may be less conservative and more in line with WHO (https://www.youtube.com/watch?v=202AZHa bD0)

Maintenance and Cleaning

- Cleaning and maintenance is <u>still very important</u>
 - Catch up on any maintenance/cleaning backlogs
 - Fill drainage traps and test water supply
 - Cross-train technical stand-in staff for emergency shortages
- Safety:
 - Air distribution equipment can be contaminated (normally nucleotide negative RNA)
 - Transmission risk is low but standard PPR precautions should be taken when cleaning or handling HVAC equipment

Maintenance and Cleaning

- Cleaning with soap and water is acceptable if disinfectants are not feasible (as usual)
- Regular cleaning of blower-coil / indoor units (as usual)
- Biocide in drip trays (as usual)
- Check Material Safety Data Sheet of disinfectants
 - Avoid generating chlorine / chloramine / hypochlorous acid fumes in ventilation systems
- Store old recirculation filters for a week before disposing them. (Keep spares in stock)

Supplementary Systems

- Portable Air Cleaners?
 - HEPA air cleaners
 - Sorbent bed air cleaners
 - Canned UVGI
 - PCO/Ozone/electrostatic etc
 - Ensure sufficiently effective to be feasible

Supplementary Measures

- UVGI
 - Upper room UVGI Not recommended for COVID-19?
 - Biofouling UV Not recommended for COVID-19
 - Return airstream UVGI redundant
- Transparent Shields between workers
 - Possibly reduce shared air by deflecting breathing plumes
- Orientation
 - Avoid face to face indoor seating

In summary

These 4 points are as valid now as ever

- 1. Decongest indoor spaces
- 2. Ventilate as well as possible (to building regulations' criteria)
- 3. Restore ventilation systems to full operation and maintain well
- 4. Resist investing in "miracle" technologies (PACs, PCO etc)

References

- Interim Guidance for Businesses and Employers Responding to Coronavirus Disease 2019 (COVID-19), May 2020
 - https://www.cdc.gov/coronavirus/2019-ncov/community/guidance-business-response.html
- ASHRAE vs WHO vs CDC Guidance
 - https://www.ashrae.org/covid-19/technical resources/does-ashrae-s-guidance-agree-with-guidance-from-who-and-cdc.pdf
- ASHRAE COVID-19 Resources
 - https://www.ashrae.org/technical-resources/resources
- NICD Environmental Health Guideline
 - https://www.nicd.ac.za/diseases-a-z-index/covid-19/covid-19-guidelines/environmental-health/
- REHVA COVID-19 guidance document
 - https://www.rehva.eu/fileadmin/user_upload/REHVA_COVID-19_guidance_document_ver2_20200403_1.pdf

